Momentum-Aware Planning Synthesis for Dynamic Legged Locomotion

Ziyi Zhou, Bruce Wingo, Nathan Boyd, Seth Hutchinson, and Ye Zhao Institute for Robotics and Intelligent Machines, Georgia Institute of Technology

Introduction and Objective

- Hierarchical gait-->centroidal-->whole-body pipelines reduce planning complexity, additional constraints on momentum and fullbody kinematics enable more dynamically feasible solutions.
- Design a centroidal optimization capable of discovering both contact sequences and angular momentum trajectories.
- Achieve a dynamic consensus between centroidal and wholebody models using constrained ADMM.

Centroidal and Whole-Body Optimization

- Centroidal optimization utilizes a single rigid body model with equimomental-ellipsoid-based Moment of Inertia (MoI) [2, 3].
- Simultaneously solve for footholds, contact forces, centroidal and momentum trajectories.
- Ellipsoid Mol tracks joint motion effects on Composite Rigid Body Mol from whole-body model for accurate momentum generation.
- WBD tracks the consensus quantities from centroidal optimization, and then solved via Differential Dynamic Programming (DDP).

ADMM Constrained Trajectory Optimization

The consensus [1] is enforced by adding equality consistency constraints for Center of Mass (CoM) positions, momentum, footholds. The Mol is directly computed from whole-body CRBMol.

Results

Quadruped Robot jump-twist and trotting examples.

Dynamic consensus of the desired variables for a jump-twist maneuver between centroidal and whole-body models.

Dynamic consensus for a trotting gait motion between centroidal and whole-body models.

Snapshots of an athletic jump-twist maneuver (a) and quadruped trotting gait (b) solved by SNOPT [4] and Crocoddyl [5] for centroidal and wholebody updates respectively.

Discussion and On-going Work

- Designed a centroidal optimization scheme for generating contact sequences and momentum.
- Dynamic **consensus between centroidal and full body** dynamic models.
- On-going work includes improving the angular momentum and inertia tracking. We are also exploring real-time constrained MPC implementations. This would require more improvements on the algorithm efficiency and scope for real applications.

References

[1] Z. Zhou and Y. Zhao (2020), [2] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli (2018), [3] V. Zordan, D. Brown, A. Macchietto, and K. Yin (2014), [4] P. Gill, W. Murray, and M. Saunders (2005), [5] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar and N. Mansard (2020)